viernes, 13 de septiembre de 2013

Cristales electrocrómicos.

Heliotrope Technologies, una start-up en fase inicial )Laboratorio Nacional Lawrence Berkeley, en EE.UU) ha desarrollado un compuesto de vidrio relativamente barato con una capacidad para bloquear selectivamente la radiación infrarroja que produce el calor del sol y la luz visible. Esta tecnología emergente de ventanas 'inteligentes' o 'dinámicas', que usan un vidrio cuya transmitancia de radiación solar pueda cambiarse a la carta mediante la aplicación de calor (termocrómica), luz (fotocrómica) o electricidad (electrocrómica), es una prometedora forma de reducir el consumo de energía para la refrigeración y la iluminación de edificios. El grupo de Milliron publicó un artículo el mes pasado en Nature en el que se describe un nuevo material compuesto de vidrio que puede ser teñido de forma reversible y puede bloquear la radiación infrarroja sin dejar de ser transparente. Esto supone la primera demostración de un tipo de vidrio que permita el control independiente sobre la transmitancia de la luz visible y la radiación IR. De hecho, el nuevo material puede cambiar entre tres modos: totalmente transparente, transparente pero con bloqueo de la radiación IR, y con bloqueo de la luz visible y la radiación IR, según la cantidad de tensión aplicada. Y una vez que el vidrio ha cambiado, ya no es necesario pasar corriente a través de él. Una ventana electrocrómica esencialmente funciona como una batería recargable transparente. Dos piezas vidrio conductor se ponen a ambos lados de un material de electrolito, y los cambios en la transmitancia del vidrio se producen en respuesta a carga y descarga electroquímica. En el diseño, el nuevo compuesto, hecho de nanocristales de óxido de indio y estaño incrustados en vidrio de óxido de niobio, se deposita en un lado y sirve como electrodo. Después se coloca otro electrodo en el lado opuesto del electrolito. La aplicación de una tensión moderada hace que los nanocristales se carguen electrónicamente, lo que a su vez hace que la radiación IR sea absorbida y bloqueada. La aplicación de una tensión algo mayor hace que el vidrio de óxido de niobio pase a ser electroquímicamente reducido, lo que da como resultado el tintado. Por último, la aplicación de otra tensión ligera hace que el vidrio vuelva a ser totalmente transparente. Para saber más ir al artículo de Anna Llordés,1 Guillermo Garcia,1 Jaume Gazquez2 & Delia J. Milliron "Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites" http://www.nature.com/nature/journal/v500/n7462/full/nature12398.html y en www.technologyreview.es

jueves, 5 de septiembre de 2013

Carbino. ¿Más fuerte que el grafeno y el diamante?

Mingjie Liu y sus compañeros de la Universidad Rice en Houston (EE.UU.) han encontrado un nuevo material al que denominan carbino. Es una cadena de átomos de carbono enlazados bien por enlaces triples y simples alternos, o por enlaces dobles consecutivos. Recientemente se sintetizaron cadenas de carbino de hasta 4 átomos de largo en una solución. Los citados investigadores han calculado, partiendo de primeros principios, las propiedades del carbino, y los resultados dan que pensar. Afirman que el carbino es el doble de rígido que los materiales más rígidos que se conocen en la actualidad. Los nanotubos de carbono y el grafeno, por ejemplo, tienen una rigidez de 4,5 x 10^8 N.m/kg pero el carbino los supera con una rigidez de aproximadamente 10^9 N.m/kg Igual de impresionante resulta la fuerza del nuevo material. Liu y sus compañeros calculan que hacen falta unos 10 nanoNewtons para partir una única cadena de carbino. "Esta fuerza se traduce en una fuerza específica de 6,0-7,5×10^7 N∙m/kg, superando de nuevo a todos los materiales conocidos, incluyendo el grafeno (4,7-5,5×10^7 N∙m/ kg), los nanotubos de carbono (4,3-5,0×10^7 N∙m/ kg), y el diamante (2,5-6,5×10"7 N∙m/kg4)", sostienen. el carbino tiene otras propiedades interesantes: Su flexibilidad se encuentra entre la de un polímero típico y el ADN de doble hélice. Cuando se retuerce, puede bien rotar libremente o convertirse en algo rígido que no se puede torsionar, dependiendo del grupo químico adherido a su extremo. Quizá lo más interesante sean los cálculos hechos por el equipo de Rice respecto a la estabilidad del carbino. Están de acuerdo en que dos cadenas en contacto pueden reaccionar, pero afirman que existe una barrera de activación que impide que esto suceda fácilmente. "Esta barrera sugiere la viabilidad del carbino en fase condensada a temperatura ambiente en cuestión de días", concluyen. Obtenido de Para saber más Ref: http://arxiv.org/abs/1308.2258 : Carbino de Primeros Principios: Cadena de Átomos de C, ¿Una Nanovara o una Nanosoga? Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope? Authors: Mingjie Liu, Vasilii I. Artyukhov, Hoonkyung Lee, Fangbo Xu, Boris I. Yakobson