lunes, 30 de abril de 2012

IV fase del Hidrógeno sólido y su estructura tipo grafeno

El hidrógeno metálico consiste en protones muy próximos entre sí (por debajo de la distancia de Bohr) con los electrones compartidos entre todos; si los protones forman una red cristalina hablamos de hidrógeno metálico sólido y si no existe esta red, de líquido. Este estado sólo se alcanzaría a muy altas presiones y se cree que podría existir en el interior de Júpiter, Saturno y algunos planetas extrasolares recientemente descubiertos.

La búsqueda del hidrógeno metálico comenzó en el siglo XIX. En 1935 los físicos Eugene Wigner y Hillard Huntington predijeron que el hidrógeno debería convertirse en un sólido metálico a altas presiones, aproximadamente de 25 GPa (gigapascales), pero experimentos posteriores no encontraron trazas de una transición metálica. Experimentos más recientes han empleado presiones mucho mayores. Destaca el experimento que en 2011 realizaron Mijail Eremets e Ivan Troyan del Instituto Max Planck (Alemania) y en el que los autores afirmaron haber encontrado la presencia del hidrógeno metálico a 260 GPa; estos resultados, sin embargo, no han sido confirmados y han sido recibidos, en general, con escepticismo.

El reto de conseguir hidrógeno metálico no sólo tiene interés desde el punto de vista puramente científico, también desde el técnico ya que sus aplicaciones potenciales son muy interesantes. Por ejemplo, se cree que el conocimiento de la estructura y características de este material podría ayudar a conseguir superconductores a temperatura ambiente o, dicho más propagandísticamente, la transmisión de energía eléctrica sin pérdidas.
 
Diagrama de fases del Hidrógeno
 
Estructura propuesta para la fase IV del hidrógeno sólido
Para saber más ir a la página de donde lo he obtenido IV fase del hidrógeno y estructura tipo grafeno

jueves, 26 de abril de 2012

DRX

Sobre la difracción de rayos X se puede ver algo en Difracción de RX

Otros materiales que imitan al GRAFENO

Un equipo de investigadores, en el que ha participado el científico del Consejo Superior de Investigaciones Científicas (CSIC), Francisco Guinea, ha conseguido fabricar un material que imita las propiedades exóticas del grafeno. Este “grafeno artificial”, que se ha desarrollado colocando y moviendo moléculas de óxido de carbono sobre una superficie de cobre, podría tener aplicaciones en campos tan diversos como la electrónica o la aeronáutica.
Para saber más ve a Alternativa al Grafeno



Un equipo de investigadores, en el que ha participado el científico del Consejo Superior de Investigaciones Científicas (CSIC), Francisco Guinea, ha conseguido fabricar un material que imita las propiedades exóticas del grafeno.

El trabajo, que aparece publicado en el último número de la revista Nature, abre la vía para sintetizar a gran escala materiales con propiedades cualitativamente similares al grafeno y disponer de nuevos dispositivos a medida.

El grafeno, a caballo entre un metal y un semiconductor, es bidimensional y se caracteriza por tener una sola capa de átomos de carbono colocados en una red hexagonal; es transparente, impermeable, duro y elástico y tiene ciertas deformaciones que dan lugar a campos magnéticos muy elevados. Cuando los premios Nobel de Física 2010 Andre Geim y Konstantin Novoselov, de la Universidad de Manchester, consiguieron aislar este material hace ocho años, abrieron también las puertas al conocimiento de estas propiedades únicas.

“Los electrones del grafeno se comportan como partículas elementales de masa cero, es decir, se mueven a velocidades cercanas a la de la luz. Además, las deformaciones de la red cristalina producen efectos similares a los de un campo magnético, pero mucho mayor que los que se pueden obtener en un laboratorio en la Tierra”, destaca Guinea, investigador en el Instituto de Ciencias de Materiales de Madrid (CSIC) y Premio Nacional de Investigación 2011 en Ciencias Físicas. 

Un posible sustituto

Estas particularidades se han reproducido ahora colocando moléculas de óxido de carbono (CO) “en posiciones adecuadas” sobre una superficie de cobre. Sirviéndose de un microscopio de barrido electrónico, los científicos lograron “empujar” estas moléculas. La propagación de los electrones a lo largo de la superficie de cobre se vio modificada por las moléculas, lo que dio como resultado propiedades cualitativamente similares a las del grafeno.

Científicos como Guinea, que llevan años trabajando con este material, creen que las aplicaciones ‐en campos tan diversos como la electrónica, la telefonía móvil, la aeronáutica o los procesadores de hidrocarburos‐ no se harán esperar. El principal problema es que aún no es posible disponer de cantidades suficientes para su fabricación a gran escala.

Según el investigador del CSIC, el método de fabricación descrito en este trabajo supone un paso más en la futura obtención de materiales con propiedades similares al grafeno, pero amplificadas o modificadas.

“Nuestro método nos ha permitido conseguir todo tipo de deformaciones y campos pseudomagnéticos. Además, hemos logrado un grado de control de estas propiedades que en el grafeno es muy difícil obtener”, agrega Guinea.

La fabricación y la posterior caracterización del nuevo material se han realizado en la Universidad de Stanford, en California (Estados Unidos). Los resultados han sido comparados con modelos teóricos desarrollados en el Instituto de Ciencia de Materiales de Madrid (CSIC).